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Abstract. In this paper, the solution for the satisfaction of  Maximal Boolean Polynomial 
Equations based on Genetic Algorithm is proposed. The Genetic Algorithm is used to model the 
problem in this method, and the population of the Genetic Algorithm is taken as the solution space 
of the equation set and the individual is a feasible solution of the equation set. By applying the 
binary fitness code to the individual and selecting the appropriate individual fitness evaluation 
function, the more the number of the individual which make more equations with the value of 0 in 
the Boolean system is, the higher the corresponding fitness value is. After the selection operation, 
crossover operation and mutation operation, individuals with higher fitness are retained and 
inherited to the next generation until the algorithm converges and eventually obtains the 
approximate optimal solution of the problem. Using matlab to program, the optimal solution 
obtained in the experimental examples is 182.  

1. Introduction 
The Boolean system is a system of equations consisting of Boolean equations [1]. In the case of 

the satisfiability problem (Max-PoSSo problem) of the maximal Boolean polynomial equations, 
given m Boolean polynomials with n variables: 
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Try to find a set of 𝑋𝑋1,𝑋𝑋2 … . .𝑋𝑋𝑚𝑚 in GF(2) (each 𝑋𝑋𝑖𝑖 value is in GF(2)) to make the Boolean 
equations f1, f2 … fm have the largest number of values 0 in this group of variables [1].  

In algebraic attacks of cryptanalysis, the attacker first sets the secret information (such as the key) 
as a variable, then establishes the corresponding polynomial equations through the relationship 
between the known information and the secret information, and resolves the secret by solving the 
polynomial equations. The solving of the Boolean system is of great significance in many aspects, 
such as the prevention of algebraic attacks, digital logic design, artificial intelligence [2]. 

2. Algorithm 
2.1 Genetic Algorithm 

Genetic Algorithm is a computational model that simulates the natural selection and the biological 
evolution of the genetic mechanism from Darwin's theory of biological evolution. It is a method of 
searching the optimal solution by simulating the natural evolutionary process. The initial population 
selects the individual according to the fitness function, and obtains the optimal individual in the last 
generation after crossover operation and mutation operation. Then decode it as the approximate 
solution of the problem. The elements of Genetic Algorithm are defined as follows:  
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Population: Consists of a certain number of individuals encoded by the gene, containing a set of 
multiple solutions of the Boolean system. Population size is the number of the solution in the 
solution space. 

Individual: The entity with the characteristic chromosome. 
Fitness Function: Also called the evaluation function. It is an indicator to judge the degree of the 

individual in the population. The function evaluates according to the objective function of the 
problem. 

Selection Operation: Select a certain number of individuals each time from the population 
according to a certain probability, to prepare following crossover and mutation operations. 

Crossover Operation: Some genes of the selected parental chromosome are mated and 
recombined to form the new individuals. 

Mutation Operation: Select a mutation position randomly from the chromosome, performing 0 
and 1 exchanges in binary encoding. 

2.2 Variables Description 
In the Genetic Algorithm modeling process, the variables used are shown in Table 1.  

Table 1 Variables description 

Variables Description 
M Population 

Xi，i=1,2,…,N Individuals in the population 
Ai，i=0,1,2,…,127 The i-bit of the individual code 

N Population size 
Pr Selection probability 
Pc Crossover probability 
Pm Mutation probability 

F(Xi)，i=1,2,…,N The fitness value of individual Xi 
Fitness(Xi)，i=1,2,…,N The relative fitness value of individual Xi 

leni The number of the equations with the value of 0 corresponded to the individual Xi 
maxlen The len value of the optimal individual in the current population 
minlen The len value of the worst individual in the current population 

2.3 Model Establishment 
Based on the first session of the First National University of Mathematical Challenge, according 

to the above description of the Genetic Algorithm, we can find that the Max-PoSSo problem can be 
solved by the modeling of the Genetic Algorithm. Through the further analysis of the problem, 
combined with the concept of Genetic Algorithm and the elements, the problem is modeled as 
follows: 

Population M: Using a method of randomly initializing the population, the initial population size 
is set to 100, contains 100 individuals. 

Individual X: Individuals use binary coding, and the digital string  which is composed of the 
independent variables 𝐴𝐴0𝐴𝐴1 …𝐴𝐴127  forms the individual. The coding sequence of a single 
individual represents a solution of the system, multiple individual forms the population. After several 
generations of evolution to get the best individual, it’s coded value is used as the approximate 
optimal solution of the system.  

The correspondence between the populations M, individual X and the solution space of the 
system, single solution are as follows: 
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Solution Space M

12710N

127102

127101

...AAA:XIndividual
..........

...AAA:XIndividual
...AAA:XIndividual

Population M

A total of 128 A total of 128

correspond
Single Solution X1:01010...011
Single Solution X2:01010...011

Single Solution XN:01010...011
..........  

Fig. 1 The Correspondence between population and solution space, individual and single solution 

Fitness Function F(X): For a single individual Xi=𝐴𝐴0𝐴𝐴1 …𝐴𝐴127, implant the corresponding 
independent variables into the Boolean equations, the more the number of the equations with the 
value of 0, the greater the fitness value of the individual is, so the greater the probability of being 
selected in the genetic operation. Individuals that have been retained by multiple iterations are those 
with high fitness values. The fitness function is calculated as follows: 

The fitness value F(Xi) of 
individual Xi=A0A1...A127

correspond Substituting Xi=A0A1...A127  into 
the system, calculate leni and F(Xi)  

Fig. 2 Individual fitness value correspondence 

The individual 𝑋𝑋𝑖𝑖 fitness function is defined as follows (after normalization): 
     F(𝑋𝑋𝑖𝑖) = 1 − (1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝜀𝜀
)𝑚𝑚                      (2) 

leni represents the number of the equations with the value of 0 corresponded to the individual 𝑋𝑋𝑖𝑖 
in the current population; minlen represents the least number of the equations with the value of 0 in 
all individuals of the population; maxlen represents the maximum number of the equations with the 
value of 0 in all individuals of the population; 𝜀𝜀 represents a very small number, used to ensure that 
the denominator is not 0, is taken as 0.0001 in this problem; m is the normalized accelerated 
phase-out index, which accelerate the speed of genetic evolution. 

Selection Operation: There are multiple selection strategies in practice, and this problem uses 
the most commonly used Roulette wheel selection method. In this method, the probability that an 
individual is selected depends on the relative fitness of the individual, individual 𝑋𝑋𝑖𝑖 relative fitness 
is defined as: 

      Fitness(𝑋𝑋𝑖𝑖) = 𝐹𝐹(𝑋𝑋𝑖𝑖)
∑ 𝐹𝐹(𝑋𝑋𝑖𝑖)N
𝑗𝑗=1

                                   (3) 

Fitness(𝑋𝑋𝑖𝑖) indicates the relative fitness value of individual 𝑋𝑋𝑖𝑖, F(𝑋𝑋𝑖𝑖) indicates the individual 
fitness, N is the population size. 

The basic idea of the Roulette wheel selection method is to divide a turntable into n sectors based 
on the selection probability P(𝑋𝑋𝑖𝑖) of each individual, the center angle of the i-th sector is: 

      2𝜋𝜋
𝑓𝑓(𝑥𝑥𝑖𝑖)

∑ 𝑓𝑓(𝑥𝑥𝑗𝑗)
𝑛𝑛
𝑗𝑗=1

= 2𝜋𝜋𝑃𝑃(𝑥𝑥𝑖𝑖)                               (4) 

Crossover Operation: Using the Binary single point intersection, the single point intersection is 
randomly set an intersection in the two parent individuals Xi and Xj coding strings, then exchange 
the front or rear part of the intersection, generate two new offspring individuals, and add to the 
population. Assume that the selected individuals 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑗𝑗  in the population are encoded as 
follows: 

𝑋𝑋𝑖𝑖 = 𝑎𝑎1𝑎𝑎2 … 𝑎𝑎𝑘𝑘𝑎𝑎𝑘𝑘+1 …𝑎𝑎𝑛𝑛                                (5) 
𝑋𝑋𝑗𝑗 = 𝑏𝑏1𝑏𝑏2 … 𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1 … 𝑏𝑏𝑛𝑛                                  (6) 

Randomly select the K-th position as the intersection, crossover the gene after the K-bit , and the 
results are shown in figure 3. 
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Fig. 3 Crossover operation 

Mutation Operation: Randomly select a mutation position on the individual coding sequence, 
exchange 0 and 1 with each other, and the new individual is produced. The mutation operation can 
maintain the population diversity and enhance the local random search ability of the algorithm. 

 

Fig. 4 Mutation operation 
After using the Genetic Algorithm to model the problem, the Max-PoSSo problem can be 

transformed into the use of Genetic Algorithms to find the optimal solution in the solution space.  

3.Experiment 
3.1 Experiment Process 

Based on the first session of the First National University of Mathematical Challenge, according 
to the established Genetic Algorithm model above, this paper designs the following algorithm: 

Encode and generate
Initial population M

Calculate the fitness of 
the individual Xi  and 
evaluate, then t=t+1

Perform selection operation 
according to the probability Pr

Perform crossover operation 
according to the probability Pc

Perform mutation operation 
according to the probability Pm

t<Number of 
iterations

End

Y

N  

Fig. 5 Algorithm process 

Step1: Select the encoding strategy. The binary coding strategy is used to encode the single 
individual according to the form of 0, 1 string. The individual code in the initial population is 
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randomly generated. 
Step2: Defining the genetic strategy. Population size is M, determine the selection probability 𝑃𝑃𝑟𝑟, 

crossover probability 𝑃𝑃𝑐𝑐, and Mutation probability 𝑃𝑃𝑚𝑚. 
Step3: the number of iteration t is set to zero, and M initial individuals are randomly generated 

according to population size. Then initialize the population. 
Step4: Define the calculation method of the fitness function F(X). 
Step5: Calculate the fitness value F (Xi) of each individual in the population. 
Step6: Use the selection operator to select individuals from the population. 
Step7: Crossover the selected individual according to the crossover probability 𝑃𝑃𝑐𝑐. 
Step8: Make the individual mutation operation according to the mutation probability 𝑃𝑃𝑚𝑚.. 
Step9: Determine whether t has reached the number of the iteration, if it has not been reached, 

t=t+1, and return step5, or preserve the optimal individuals in the current population as the 
approximate optimal solution of the problem and end the program. 

According to the above algorithm to solve the model, the specific result is in the next section. 

3.2 Results and Analysis 
The Genetic Algorithm is used to establish and solve the model, the initial population size is set to 

100, the individual code length is set to 128, the crossover probability is set to 0.6, the probability of 
mutation is set to 0.1. The number of iteration is set to 200. Due to the randomness of the initial 
population, the approximate optimal solution of each program running is not the same. One of the 
results of the operation shown in figure 6.  

 

Fig. 6 Genetic Algorithm operation results 
After the analysis of the figure is easy to draw, the optimal value of the Genetic Algorithm 

operation results, with the increasing of the genetic algebra(X axis), is constantly increasing in the 
overall trend (Y axis). In other words, under the action of genetic evolutionary strategy, the 
individual's fitness value of every generation is getting higher and higher, the optimal value is rising. 
The optimal result in figure 6 finally converges to the point (256, 160), indicating that the Genetic 
Algorithm ends at the 256th generation, the maxlen corresponded to the optimal individual is 160, 
which means that the optimal individual can make 160 equations of the equation set equal to zero.  
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Fig. 7 Main program time consumption 

 

Fig. 8 Single Boolean polynomial time consumption 
The time consumption of the Genetic Algorithm operation is shown in figure 7 and figure 8. We 

can draw from the figure above that the main run time of the algorithm is spent on the calculation of 
Boolean polynomial equations, and the 146,194,247 equations have the longest computation time in 
all equations and can be defined as the complex equations.  

Because of the "premature phenomenon" of the Genetic Algorithm, the local convergence rate is 
slow in the absence of effective heuristic information, and the optimal result is usually the local 
optimal result, which is not the globally optimal solution. In order to overcome this problem, we 
have done several fine tunings of parameters in the experiment, repeated experiments, and achieved 
some intermediate results. Some of more optimized results are in Table 2. 

Table 2 Optimization results 
The maximum value Coded value  

maxlen=154 
1010011111111010110011001100010101111111010011000100000111100110 
0101111111000101100110101111010010110111101111010011111010010101 

maxlen=167 
1000100101000100100111100100010000100010010010110110101100110010 
0111100110110111111011000111000101001101101010001100111100011010 

maxlen=170 
0001000000010101101010110100000011010000111100100111010100100011 
0001001000101110111101000110000110011110110111011110010111001000 

maxlen=175 
1101100100101111000111000000000000000000100101100100101011100000 
0000000000000000000000000000000000000000110000110001001010001111 

maxlen=182 
1010111010001001110010000110000000010000000010000000000000000000 
0000000000000000000000000000000011111111111111111111111111111111 

In the results of the experiments above, we obtained the optimal value of 182, the corresponding 
individual code is： 

0001000000010101101010110100000011010000111100100111010100100011 
0001001000101110111101000110000110011110110111011110010111001000 

We verify the result by substituting the value of the independent variable corresponded to the 
individual into the system, the number of equations with the value of 0 is 182, that is, which means 
182 is the correct result to satisfy the condition. 
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4. Conclusion 
In this paper, the Max-PoSSo problem is effectively modeled by Genetic Algorithm. The 

population of the Genetic Algorithm is taken as the solution space of the system, and the binary 
coded individual is a feasible solution of that. By selecting the appropriate fitness function, the 
higher the number of equations with the value of 0 in the system, the higher the fitness value of the 
corresponding individual is. After the selection operation, crossover operation and mutation 
operation, the individual with higher fitness is retained and the optimal solution of the problem is 
obtained. 
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